
.

4

S U P E R V I S E D A U T O N O M Y F O R S P A C E TELEROBOTICS

Paul G. Ilackes
Jet Propulsion I,aboratory

California Institute of Technology
Pasadena, California

Abstract

Supervised autonomy for control of space manipulators is described in this chapter. The
supervised autonomy methodology has been successfully utilized for time delayed remote
control of unmanned spacecraft. This method olo~y also provides a safe and effective means
for time delayed control of space manipulators. An important feature of supervised auton-
omy is that commands can be iteratively generated, saved, simulated, and modified before
being sent for execution on the remote robotic system. ‘l’his provides the necessary com-
mand verification for safe execution as well as time delay invariant execution. Tile features
of a supervised autonomy system are
laboratory system and example tasks.

explained through the description of an operational
Evolutionary directions are also discussed.

1 Introduction

Telerobotics continues to provide a means for extending human presence in space as an
integral part of tho control architecture of unmanned spacecraft. Scientific, data return is
maximi~ed within a fixed mission budget by properly separating the spacecraft and instru-
ment control into ground and spacecraft based segments. Since the spacecraft must be
reliable and fail-safe, its design is optimimd to provide only the required on-board capabil-
ities for communication and control of the spacecraft and instrutnents to achieve mission
success, The Earth based segment of the system generates command sequences which are
telemetered to the remote spacecraft. Con~nland generation on the ground based upon
updated data from the spacecraft provides the needed system flexibility to achieve mission
success. Extensive human and computational rmources are available on the ground com-
pared to providing similar resources on the spacecraft. The spacecraft is able to execute
command sequences which have been telemetered from Earth as well as to react to anon~a-
10US situations. Ground based control of remote unmanned spacecraft is an application of
supervised autonomous control. The same basic control architecture can be used for other
types of space robots such as unmanned rovers [1] and the focus of this Chapter, space

1

manipulators. Further reference totelerobotics will imply control of amanipu]ator unless
otherwise stated.

Manipulators in space can provide valuable extensions of human capability for task
execution. A near term application of space telerobotics is on Space Station Freedom. The
required astronaut extravehicular activity time required to perform all of the projected
maintenance activities on the Space Station is projected to be above the expected avail-
able EVA time. Additionally, there will be an extended man-tended phase when the Space
Station is manned only part of the time. Telerobotics can be used to perform some main-
tenance, assembly, and inspection tasks to relieve the astronauts of some duties. Also,
through utilization of ground control, many tasks can be performed using telerobotics when
there are no astronauts on board the Space Station.

‘J’elerobotics methods can be separated into three types: manual control, supervi-
sory control, and fully automatic control [2, 3, 4]. The distinction between these methods
is briefly described here. Sheridan’s text ~1] provides a good historical perspective and lit-
erature review on these approaches to telerobotics. The term teleoperation may be used
generically to describe all telerobotics methods but is used here in its more common con-
notation of manual control. In manual control, all robot motion is specified by continuous
input from a human, with no a.dclitional motion caused by a computer. In supervisory
control, robot motion may be caused by either human inputs or computer generated inputs.
In fully automatic control, all robot motion is caused by computer generated inputs.

‘I’here are two primary subsets of supervisory control: supervised autonomy and
shared control. The distinction between thorn is the nature of the inputs from the opera-
tor. In shared control, operator commands are sent during execution of a motion and are
merged with the closed loop motion generated automatically [5, 6, 7]. Therefore, in shared
control, all inputs from the operator are not known a priori to execution of a motion since
inputs during execution are also used. In supervised autonomy, autonomous commands are
generated through human interaction, but sent for autonomous execution [8], A command
can be sent immediately or iteratively saved, simulated, and modified before sending it for
execution on the real robot. Also, individual comtnands can be cotnplete descriptions of the
motion [9] or module commands specifying only modifications to the control or monitoring
of a specific module of the remote system [10].

‘l’he ability to iteratively save, simulate, and modify commands before sending them
for execution is a critical feature of supervised autonomy which distinguishes it from other
forms of supervisory control. For safety purposes it is valuable to be able to simulate
task execution before sending command sequences to the manipulator for task execution.
With supervised autonomy, a command or command sequence can be saved, simulated, and
modified before sending it for execution on the real robotic system. Safety is achieved by
verifying the commands before sending them for execution on the real robots and through
real-time monitoring. Commands can be modified and simulated until they are acceptable
for execution on the robot. Individual commands can be concatenated into a command
sequence which can then be iteratively simulated and modified and inserted into yet a
larger sequence, Sequence generation for autonomous spacecraft is a formal process since
dangerous or incorrect commands could result in serious damage, loss of unique scientific

2

.

. .

opportunities (e.g., during a planetary flyby), or loss of the entire spacecraft. In shared
control, operator commands are sent immediately to be merged with the autonomous exe-
cution, Safety in shared control is achieved either by relying on the operator to input safe
motions, or by having real-time autonomous monitoring and modification of the motion
specified by the operator.

The term telerobotics implies a separation between the operator and the robot.
This separation gives rise to a partitioning of a telerobotics system in to two components:
the local-site where the operator resides, and the remote-site where the robots reside [2].
The separation between the operator and robot causes a communication time delay. Time
delay is another factor which makes supervised autonomy an important approach for space
telerobotics. For Space Station Freedom applications, the projected round-trip comnluni-
cation time delay between an Earth based local-site and Space Station based remote-site
is expected to be approximately 7 seconds (mostly in data processing and relay) [11] while
round trip time delay to a planetary spacecraft or vehicle is measured in tens of minutes to
hours [1]. Teleoperation and shared control become increasingly difficult with time delays
due to the continuous real-time inputs [2, 4], Supervised autonomy overcomes the time
delay problem by providing closed loop control at the remote-site based upon autonomous
commands generated at the local-site.

An important feature of supervised autonomy is bounded behavior execution [8].
Bounded behavior execution allows task execution to diverge from the nominally planned
motion within a specified bound. For safe operation it is desired to know a priori exactly
what the manipulators will do during execution of a task. But, since the remote execution
environment cannot be known a priori exactly, real-time execution will rely on both the
a priori planned trajectory and perturbations due to remote sensed data. The safety of
execution within a specified bound can be tested a priori at the local-site. The remote
system can then autonomously monitor execution in real-time to ensure that the state of
the motion is within the specified bounds, e.g., deviation from the a priori trajectory or
contact force thresholds. If execution moves out the specified bounds, then an automatic
reflex action is invoked and further local-site commands are awaited.

The local and remote components of a supervised autonomy system can be divided
into subc.omponents. The local-site includes sequence generation, sequence analysis, n~on-
itoring, and telemetry. The remote-site includes telemetry, command parsing, sequence
control, real-time control, monitoring, and reflex. Different implementation approaches
may be desired for different application domains. Space applications impc}se important
constraints on the telerobotic system architecture with the flight component on the system
usually providing the most stringent constraints. Flight systems require robust flight qual-
ified software running in limited computing environments (limited compared to the ground
system). Modification of flight software during flight, although possible, requires an exten-
sive and costly qualification process, This leads to t}ie solution taken for unmanned robotic
spacecraft control: command sequences are composed of command types and associated
data. which specify the desired spacecraft and instrument control behavior [12, 13]. ‘l’he
flight software is fixed but provides general colnnland types which can be parametrized to
generate a wide range of specific control behaviors, This supervised autonomy architecture
for programming a remote spacecraft can be used for control of remote space manipulators.

3

.

Sequence generation is the process of generating a command sequence which can be
telemetered to a remote autonomous robot control system. An operator interface is provided
which the operator uses to specify the desired commands. Computer aids can help in the
specification of tasks, commands, and parameterization. Computer aids include modeling,
visualization, and task planning. Computer modeling provides a model of the manipulated
object or task execution environment. Visualization provides a graphical representation of
the scene, An accurate representation of the task execution scene is important to ensure
that the a priori simulation is a valid representation of the execution that will occur on the
real robot. One way to verify that the modeled environment matches the real environment
is to overlay a graphical representation of the model on red images of the remote scene,
The model can be modified to match the remote scene using data returned from the remote
environment [14, 15]. Autonomous task planning aids can provide suggested task commands
and parameterization to the operator. Automatic task planning associated with fully auto-
matic control is not yet feasible. To aid the operator, an interface could provide suggested
parameterization for specified individual command types [16] and let the operator specify
the specific parametrization and sequence of commands. State transition graphs which
provide the sequence of commands and automatic parameter selection for a selected task
[17] could be provided, but upon failure, reliance on interactive task description is again
necessary. Automatic generation of low level command primitives based upon analysis of an
operator’s actions while interacting with a graphical interface has been suggested [15], but
the low level commands do not include context iuforrnation such as object mass properties
and termination conditions which would be provided in a supervised autonomy system.

Sequence analysis determines the expected result of executing a generated sequence
and the level of confidence in achieving that result. Graphical simulation is provided so that
the powerful analysis capabilities of the human operator can be used. Automatic analysis by
the computer may provide tests for dynamic loading, collisions, valid range of motion, and
valid commanded velocities and accelerations. It is valuable to have as accurate a model of
the remote system as possible to increase confidence in the sequence analysis results. I.ocal-
site monitoring analyzes the reports from the remote-site to test for valid execution and
system health. The local-site will usually have much greater diagnostics capabilities than
the remote-site due to the greater human and computational resources available. Local-
site telemetry provides the communication of command sequences to the remote-site and
receiving of status and data from the remote-site.

Remote-site telemetry receives command sequences from the local-site and sends
status and data to the local-site. Command sequences are parsed at the remote-site into
individual commands for execution. Sequence control provides the transitioning of com-
mands. This includes transitioning to the next command in a command sequence upon
expected termination and transition to reflex action upon a reflex monitor event. Real-time
control provides the closed loop servo control of the remote-site mechanisms. The control is
based upon commands generated at the local-site. Remote-site monitoring is the analysis
of remote-site execution to provide information on whether to transition the state of exe-
cution. Reflex is the ability to respond to monitored conditions. The most common reflex
is to transition to the next command in a command sequence based upon a monitor event
which indicates that the previous command has successfully completed, An equally impor-

Graphics Overlay
1 Task Description, on Stereo Video,

Remote Site Sequence Generation, Object./Destination
Simulator Status Display Selection

t t t

Local-Remote
Communication “ . 1

LOCAL

~A
R~MOTlt

Left Arm Joint Servos,
Gripper Control,
Sensors il!i7’$~~e”Os’l”lIE!cH3

Figure 1: Laboratory local-remote system block diagram

ta.nt reflex is the ability to transition to a safety reflex action based upon an unexpected
monitor event.

‘The features and capabilities of a system providing supervised autonomy of a remote
manipulator system are described in the following sections through the description of an
operational laboratory system.

2 Example Local-Remote System

The local-remote system architecture of the example supervised autonomy system is shown
in Figure 1. The same system also provides shared control and force reflecting teleoperation
[16, 18, 8], but those capabilities are not within the scope of this Chapter. The primary
operator interface workstation (Sun 3/60) provides interactive task description, sequence
generation, and status display. A graphics workstation (Silicon Graphics IRIS) provides
stereo graphics overlay on stereo video as well as interactive designation of objects or des-
tinations, The remote-site simulator simulates remote-site execution with execution status
displayed on the primary workstation and motion displayed on the graphics workstation.
‘The remote-site provides two control systems, one for independent, coordinated, or cooper-
ative control of two task execution manipulators, and one for control of a third manipulator

5

.“

for positioning a suite of four cameras. The Executive provides communication with the
local-site and initiates task commands as specified by the local-site. Task primitives provide
joint and task space control and monitoring of single or dual cooperating manipulators.

2 . 1 Rer-note S i t e System

The remote-site system design of a space telerobotic system has more constraints imposed
on it than the local-site system. The resulting capabilities of the remote-site will drive the
design of the local-site. A primary remote-site constraint is flight qualification of the soft-
ware. This creates the need for fixed flight software which has been validated before flight
(or modified, validated, and uplinked infrequently). Fixed flight software precludes custom
optimized programs for each mission task. Rather, the fixed flight software tnust provide
sufficient functionality to complete both expected and unexpected mission tasks. The solu-
tion provided in this laboratory system is a family of parameterizable task primitives, each
with general functionality for a class of manipulation tasks. Separate commands provide
other needed capability such as databased update, status request, and execution interrupt.
Task execution primitives are self contained programs which provide manipulator control
capability with behavior as specified by an input parameter set. The control capability is
provided via the paramcterization but the implementation details are hidden, A natural
interface between the local and remote-site systems is then the the parameter lists for the
various task primitives,

2.1.1 E x e c u t i v e

The Executive provides functionality similar to that of a spacecraft Command and Data
subsystem [19, 12]. It receives commands from the local site, parses the commands to
determine command types, and initiates execution of the commands by executing task
primitives or other commands with the parametrization given in the command data sets.
The 13xecutive also returns system state information to the local-site.

2.1.2 C o m m a n d s

The interface commands that can be sent to the remote-site by the local-site include
database commands, a status command, and execution commands. The Database conl-
mand has parameters specifying the arm and database datatype followed by the specific
database parameters. Remote-site database parameters that can be modified by a database
command include a transform specifying the position of the robot’s base, force-torque, joint,
and singularity safety limit thresholds, grasped object mass properties, and rate to report
status to the local-site, The database parameters are used by the task primitives along with
the task primitive parameters when executing a task. Ilatabase parameters are separate
from task primitive parameters bccausc they are expected
task primitive parameters or provirlc system information.

6

to change less frequently than
The Status command requests

.

.’

the remote-site to return the state of the arm specified in the command. This is useful
when no task is executing and no status inforrpation is otherwise being returned. There are
six autonomous execution commands (with corresponding remote-site task execution primi-
tives): Cartesian Guarded Motion, Joint Guarded Motion, hiove To Touch, Single Arm
Generalized Compliant Motion, Dual Arm Generalized Compliant Motion, and Grasp.

Guarded motion task primitives provide free space motion with monitoring for col-
lisions. The Cartesian Guarded Motion primitive [16, 19] performs a single-arm Cartesian
interpolated motion and stops on the destination position or sensed force or torque thresh-
olds. Inputs to the primitive include which robot, time or velocity based motion, time or
velocity to perform motion in, force and torque thresholds, coordinate frame to sense colli-
sion forces in, coordinate frame in which to perform Cartesian interpolation, and position
destination via points to go through. The Joint Guarded Motion primitive is the same as
the Cartesian Guarded Motion primitive except that joint interpolation is used instead of
Cartesian interpolation.

The Move TO Touch primitive [16, 19] performs a single-arm move with Cartesian
interpolated motion until the specified destination is reached or until a force or torque
threshold is exceeded. If a force or torque threshold is reached, then the arm moves back
toward its initial position until the force and torque magnitudes are below reverse thresholds,
above safety thresholds, or the arm has returned to its initial position. Inputs include which
arm, the Cartesian destination, the frame in which to perform Cartesian interpolation,
the forward, reverse, and safety force and torque thresholds, and the forward and reverse
velocities.

Generalized compliant motion provides general autonomous task execution capa-
bility for motion in contact with the environment (as well as shared control). There are
both single and dual-arm generalized compliant motion task primitives. The Single Arm
Generalized Compliant Motion primitive [9, 6] performs general single-arm Cartesian space
compliant motion tasks. Inputs to the primitive include which arm, destinaticm coordinate
frame, frame in which to perform Cartesian interpolated motion, frame in which to per-
form Cartesian force control, frame in which to generate Dither position commands, time
or velocity based motion, time or velocity for positional motion, dither magnitude and pe-
riod, position-force selection vector to select position and force DOFS in the control frame,
comply selection vector to select which position DOFS also have compliance, force control
gains, gains for stiffness control, force-torque and position-orientation thresholds, a paran)e-
ter selecting which termination conditions to test for, and termination conditions including
maximum errors in position, orientation, force, and torque and their rates of change. The
motion in any DOF can have inputs from the position trajectory generator, dither, sensor
based control (force, stiflness, etc.), or any simultaneous combination of sources. This ap-
proach is sitnilar to impedance control [20] where resultant motion in any IIOF is based
upon a combination of both the position setpoint and interaction forces, as contrasted with
hybrid position-force control [21] where position and force I)OFS are separate. Nominal
motion generates motion based upon a Cartesian trajectory generator. Sensor based n~o-
tion (force, stiffness, ancl dither here) perturbs the nominal motion. Force control modifies
the Cartesian setpoint to control contact forces. Stiffness control modifies the Cartesian
setpoint to pull the tnotion back toward the non~inal motion, thus counteracting the etTw(s

7

of force control. The Dual-Arm Generalized Compliant hlotion primitive provides all of
the capabilities of the Single-Arm Generalized Compliant Motion capability and provides
cooperative dual-arm control [7].

There are two segments of motion in the Generalized Compliant Motion Primitive,
the nominal motion segment and the ending motion segment. When the primitive starts,
it executes tbe nominal motion segment with the specified Cartesian interpolated motion
and all other sensors. Motion stops if a monitor event is triggered or Cartesian interpolated
motion completes. If the nominal motion segment completes (Cartesian interpolated motion
completes), then the end motion segment begins. Exactly the same control occurs except
there is no Cartesian interpolated motion; only the sensor based motion is active. But,
whereas during the nominal motion segment the termination conditions were not being
tested, they are tested during the ending motion and the motion can stop on a monitor
event, time, or a termination condition (monitor events and time can also be considered
termination conditions).

The Grasp primitive opens or closes the gripper while performing generalized com-
pliant motion. Inputs include the Generalized Compliant Motion inputs as well as finger
speed and finger separation. The gripper opens or closes with specified speed and to the
specified finger separation and stops upon reaching either a finger threshold force or the
specified separation. Generalized compliant motion provides compliance to relieve internal
forces during the grasp, or apply specific forces during the grasp, e.g., comply in all I)OFS
except apply a force against the surface you are grasping.

Dual-arm equivalent Guarded Motion and hfove To TOUCII primitives were not im-
plemented because the chosen evolutionary path for task execution was to fold all capability
into a. common modular execution environment. ‘1’his is discussed below in Section 5.

2.2 Local Site System

The remote-site system design specifies the interface that the local-site can use to control
the remote manipulators. The local-site system is then designed to provide the remote-site
capability to the operator. There may be multiple local-sites for one remote-site such as
for Space Station Freedom where local-sites on Earth and the Space Station could control
a common manipulation systcm [8]. The local-sites could share responsibilities, e.g., the
Earth based local-site could generate command sequences and telcrncter thcm to the Space
Station based local-site where an astronaut would initiate them. An Earth based local-
site is valuable because it has much greater human and computational resources than a
space based local-site, This section assumes a. single local-site communicating with a single
remote-site.

8

,

Figure 2: Video-graphics workstation

2.2.1 Interactive Task Descript ion

stereo graphics overlay on stereo video

Task description and sequence generation are provided by the User Macro Interface (IJMI)
[16]. UMI abstracts away the details of thelocal-rernot einterface and provides theop-
erator with more natural menus for specifying tasks and parametrization. The resulting
inputs from the operator are converted to equivalent commands and parametrization to
be communicated to the remote-site. An iconic graphical interface implementation of UMI
is presently under development, as discussed below in Section 5. The operator has the
option of running either the real remote-site robots or simulating the motion at the local-
site by sending commands to the remote-site simulator and observing the results on the
graphics display. The graphical results are displayed both with wire frame graphics on the
primary operator workstation or on the video-graphics workstation. Stereo graphics overlay
on stereo video on the video-graphics workstation is shown in figure 2. Simulation mode
is selected as a parameter in the lJMI environment menu. The remote-site simulator runs
identical control software as in the remote-site system and sends joint angle data to the
UMI graphics displays.

The operator describes a task by utilizing the interactive UMI menu system. lJMI
is a hierarchic] menu system which guides the operator from general motion types at
the top of the hierarchy to the specific at the bottom of the hierarchy. UM1 eventually
specifies to the local-site executive task primitives and their parametrization to perform
the specific tasks desired by the operator. The operator cloes not need to know the specific
task
e.g.,

primitives which will be used, Instead the operator specifies a generic motion type,
guarded motion, move to contact, compliant motion, or grasp and then the interface

9

provides a new macro menu with interaction germane to the specific motion type. For
example if the operator specifies compliant motion, the compliant motion menu will appear
with hinge, slide, screw, insert, level, push, and general macro options. ‘l’he operator will
then select one of these and a new menu will appear with inputs pertaining only to that
type of motion. The insert menu would allow the operator to specify the insertion direction,
force, thresholcls, etc. The operator then has only a small number of decisions at any point
in the hierarchy but can specify a specific task.

The operator may save a specific parameterization of a task as a task command.
For example, the operator can specify a door opening motion but internally it is actually
the Generalized Compliant Motion primitive with specific parametrization. ‘l’he operator
builds the door opening command and can save it by giving it a name, e.g., door.open. The
operator can then use the door-open command later either with the simulator or on the real
arms. The operator can also string several commands together creating a sequence and save
the sequence with a. name for later use. Relative and absolute motion commands are useful.
A relative motion command has the same relative motion from its starting point as when
taught even though the absolute starting point changes. This is useful for tasks executing
relative to their environment such as bolt turning and grasping. Absolute motion commands
have an absolute position destination independent of where they start their motion. These
are useful for moving to an absolute position before beginning a relative moticm command.

The sequence editor allows the operator to edit a sequence which has been previously
built. The operator selects the sequence menu and then the sequence editor menu and finally
the-sequence to edit. !l%e parametrization for each command can then be modified by the
operator.

‘l’he system I?nvironment is another branch of the tree where the operator specifies
parameters which change rarely or are used globally by the different task mac.rcw, e.g., which
arm (right, left, dual, camera.), time delay to invoke, and safety force-torque thresholds.

The status of the remote-site system is updated on the local-site operator control
station monitor whenever a systcm status (updated at a settable rate, usually approximately
1 IIz) or command result is returned from the remote-site. This includes the graphics
simulation which is automatically updated with the remote-site arm positions and the joint
and force values which are updated on the graphical displays at the bottom of the interface,
as well as the gripper positions.

The stereo graphics overlay on stereo video, shown in Figure 2, is valuable for simu-
lation and interactive destination selection [8]. Tasks are simulated by selecting simulation
mode in the environment menu of lJMI. Then any command or command sequence that is
sent is routed to the remote site simulator for execution. The remote site simulator sends
commanded joint angles to the simulator for graphics update. Interactive destination se-
lection is achieved through the use of a spaceball input device which specifies motion of a
graphical cursor in the graphics display. The operator selects with an UMI menu to return
to UMl the cursor position or the position of the object closest to the cursor. Selecting to
return the cursor position allows the operator to interactively generate a path.
moves the cursor, presses a button on the spacchall, the motion is simulated,

10

The operator
and then the

operator can send the same motion for execution on the real robots. ‘This provides a safe
interactive means for generating a trajectory through a constrained workspace. The opera-
tor can also use the cursor to select an object in the environment. ‘I’he operator moves the
cursor near the object and presses a button on the spaceball. ‘Me coordinate frame, which
is the internal positional representation of the object, closest to the cursor is highlighted
(turned red) to indicate the selected object and position. The operator can then graphically
simulate a motion to an approach point above the coordinate frame. This command can
then be sent to the real robot for execution. Any of these motions can also be saved for
later execution or modification.

Graphics overlay on video is used to confirm that the geometrical model of the
environment is valid. Operator coached machine vision [14] is used to match the geometric
model with the video images returned from the remote environment. With OCMV, the
operator provides a rough estimate of an object’s position by manipulating a graphics
environment which is overlayed on the returned video. ‘1’he object’s modeled position is
then adjusted for more accuracy with machine vision. Once the model is validated, the
video image can be turned off and the graphical scene can be used by itself. This graphical
representation of the scene can now be used without the limitations of the fixed viewing
characteristics of the real video. The eycpoint can be changed to a more useful point for
a given task, This can be very important when the surfaces of interrest are occluded from
view. For example, during insertion of an orbital replacement unit on the Space Station,
there will likely be no way to see the mating points on the bottom of the ORU with the given
camera locations. With a validated graphical representation of the scene, the eyepoint can
be moved so that the motion behind the ORU can be seen graphically. This approach to
manipulation will change the requirements for cameras in space from what a human would
ncccl to accomplish a task to what is necessary to generate a valid geometric model of the
environ ment.

3 Sequence Control

Sequence control is control of the transition between commands in a sequence or transition
to a reflex action. Two itnportant parts of sequcncc control are run time binding [8] before
execution of a command and testing of termination conditions at the end of a command.
Run-time binding binds parameters to a task command just before its execution is initi-
ated. Parameters bound at run time may not be known at the time the command is built.
Some examples of run-time binding include binding the current safety parameters, speed
factor, and the reporting period to the parameter list. Each command in a task sequence
completes due to satisfaction of a termination condition (including safety conditions). If the
termination condition is one of the acceptable termination conditions specified in the con~-
mand, then the uext command of the scquencc is issued. If not, then a safety reflex action
is initiated, and a new command sequence must be sent. Sequences can have interspersed
commands for all three remote-site robots and dual-arm cooperative control.

Transition between commands in a sequence can occur at either the local or remote

11

Figure 3: Door opening and closing task

site but transitionin.g to a reflex action should be done autonomously at the remote site.
I+’or sequence control at the local site, a delay at least as long as the round trip titne delay
will occur between execution of each command in a sequence since the local-site must then
receive the remote-site status indicating that the command has terminated successfully
before sending the next conlmancl in the sequence. Earth based secluence control may be
feasible for Space Station or Lunar applications where round trip time delay will likely be
less than 10 seconds, but for exploration of the rest of the solar system, the large time delays
will make sequence control at the remote site more feassible. Remote site sequence control
has been used for unmanned spacecraft
sequence control occurs at the local site
site,

missions. In the laboratory system described here,
with reflex to safety commands done at the remote

4 Example Task

Many tasks have been executed using the local-remote system described abcwe [7, 22]. A
door opening task sequence is described here to illustrate supervised autonomy for a specific
task. The task is to approach, grasp, open, and close a door. The manipulator opening
the door is shown in Figure 3, ‘The task sequence, Loor.fmsk, is made up of the following
commands (with the associated task execution primitive given in parenthesis).

● g??lol)e-k?tob-{l l~l~roacll (Cartesian Guarded Nlove)

● nttouch-zlobnm (hlove To Touch)

12

grasp.close (Compliant Grasp)

door-open-30-deg (Generalized Compliant Motion)

door-close-32-deg (Generalized Compliant Motion)

grasp-open (Compliant Grasp)

gmove-knob.approach (Cartesian Guarded Move)

The manipulator is initially at a staging location. The groove-knob-approach is an
absolute motion command to move the manipulator gripper to all approach location above
the door. The acceptable termination condition is Stopped On Position Reached. AH of the
commands except the guarded motion (gm.ove-) commands are relative motion commands
meaning they could be used for any location of the door. The guarded motion commands
move the arm to the specific location of the door and then away after the task is completed.
The nttouch-z100ntm command moves the gripper into contact with the doorknob using
a Cartesian motion of 100 mm along the TOO 1. frame (a.tt ached to the gripper) Z axis
until contact occurs. Actual contact and command termination occurs after approximately
50 mm. The acceptable termination condition is Stopped On Reverse Force which indicates
that the motion stopped when moving back toward the starting point and the contact force
magnitude fell below the specified reverse force threshold. The grasp-close command closes
the gripper while applying force control to null any internal forces due to misalignment of
the gripper over the knob.

The door-open-30-deg and door-close.32-deg require the most sophisticated control
and monitoring of all the tasks in the sequence so they will be discussed in more detail. III
the door-open-30_deg command, the Genera.lized Compliant Motion primitive is specified
along with specific input parameters. The nominal motion frame, NOhI, for Cartesian
interpolated motio]l is specified to have its Z axis along the hinge axis. The force control
frame, FORCE, is specified to be on the knob. A Cartesian interpolated motion of 30 degrees
about the NOhI Z axis is specified. Force control with zero setpoints is specified for all six
I)OFS of the FORCE frame. Force control is necessary to correct for the difference between
the physica~ motion constrained by the door and the a priori planned nominal motion based
upon the model. Stiffness control was specified in all DOFS of the FORCE frame. Stiffness
control is necessary to offset the force control based motion when forces are reduced. The
acceptable termination condition was specified to be a low orientation error of 0.1 degrees.
This is triggered when the actual orientation of the nominal motion frame is within the
specified bound during the ending motion, ‘J’he results are shown in figure 4. The door was
successfully opened 30 degrees.

The value of the stiffness control is shown by executing the same task but without
use of stiffness control. The results are shown in figure 5. In this case the door opened
a maximum of only 21.6 degrees. The maximum rotation occurred when the trajectory
generator finished. After that, the ending mot ion time segment began and the door slowly
began closing due to its gravity weight. The ending condition of 0.1 degree from the
30 degree goal was never satisfied so the command stopped on the time timeout condition.
The reason that the door did not open all of the way is that force control in the FORCJI

13

Y Translation (mm)

-lo 0 10 20 30 40 50 60 70

30 r 1 v 1 70I I I 1 .

25

20

15

10

5

0

/

.
●

●
✎

/’..,
●#

,“.,#.,
● “,#

,“
●

#o#
●.

. 1 1 1 1 I 1 I I 1

60

N
10

0

-10.’

0 2 4 6 8 10

Time (see)
Figure 4: Autonomous door opening results: solid is motion of FORC13 frame (knob);

dashed is rotation of NOM frame (hinge axis)

..-,y 1 ranslauon (mm)

-lo 0 10 20 30 40 50 @ 7°

30 T # I 1 1 , 1

25

:,(,,,,,,,,,,:

,.=
20 .“ - - - - - - -,#

. ’,#
15 .#

●.
.“

10
,#/#,,d

5 ,,
. ’

0 **’

o 2 4 6 8 10 12 14

70

60

‘?
g

40
5

30 “j

iii20+
N

10

0

-lo

Time (sac)
Figure 5: Autonomous door opening results (no stiflness control): solid is motion of FORCIZ
frame (knob); dashed is rotation of NOM frame (hinge axis)

14

Y Translation (mm)

-70 -60 -50 -40 -30 -20 -lo 0 10

-35 i 1 , , , v , , 1 10

-30

-lo

-5

0

N
-50

-60

0 1’ * * 1 1 1 # 1 1 1 1 1 J -70

0 2 4 6 8 10 12

Figure 6: Autonomous door closing:
rotation of NOhI frame (hinge axis)

Time (see)
solid is motion of FORCE frame knob ; dashed is

frame caused motion to resist the nominal trajectory gcl{erator motion and there were no
virtual springs to offset this motion.

The door closing comtnand, door.close-32-deg, used the same parameters as for
the door opening task, including stiffness control, except that the nominal motion was
negative 32 degrees and diflerent termination conditions were used. A 32 degree motion
was used to be sure to have the door close completely. If the a priori model was known
to be accurate, then a 30 degree specified rotation might have been sufficient, but there
will often be a cliffercnce between the modeled and physical environments and commands
should be robust to this disparity. The specified acceptable termination condition was a
combination of low orientation error (3 degrees), low translational error velocity (1 mm/see),
and low orientational error velocity (O. 1 degree/see). The translational and orientational
error velocities arc the rates of change of the translation and orientation errcws relative to
the nominal motion trajectory. The results are shown in figure 6. The figure shows that the
door was successfully closed 30 degrees. The motion is nearly linear until the door makes
contact and is closed at 30 degrees. Then the rotation stops which triggers the termination
condition,

The rest of the sequence then continues (assuming the termination conditions are
always valid) with grasp-open to open the gripper, and gmove-knobmpproach, to move
away from the knob.

The door opening and closing commands were shown in more detail to demonstrate
the need for the various rm-note site cent rol feat ures. The door closing task is actually the
most difl]cult because it shows the potential di~iculty of determining when a command has
completed successfully at a remote task execution site. We could not know exactly how
many degrees to close the door. (’losed was not a precise distance and orientation state,

15

but ratlier adistance andorientation state in combination with a motion state constrained
by the physical environment. Visual feedback will not be sufllcicnt for many space tasks to
determine successful completion. Processed sensory data, such as rate of change of position
and orientation errors as used in this exatnple, will be needed to determine successful task
completion.

5 Evolution Of The Local-Remote System

‘l’he system described above provides the basic capabilities of a supervised autonomy system
for space tclcrobotics. This type of system could be used for near term applications such
as tcIerobotics for maintenance of Space Station Freedom. As telerobotics evolves, more
advanced technologies for implementing the capabilities will be provided. A new system
is now under development for Space Station Freedom ground-remote tclerobotics. Some of
the

5.1

cchnologies

Remote

and implementation approaches for the new system are descr

Site Evolution

bed below.

Three approaches have been considered for increasing the capability of the remote site sys-
tem: more general task primitives, an interpretive programming language, and data driven
execution. ‘1’he previous evolutionary path of the system described above was to continu-
ously reduce the number of task primitives by increasing the capability of the Generalized
Compliant Motion primitive, It would be possible to enhance the Generalized Compliant
h~otion primitive to include the capability of the two guarded motion primitives and the
grasp primitive, thereby further reducing the number of task primitives. This could have
two benefits: simplification of the system design and increased capability. The system would
be simpler due to the reduced number of primitives, lines of code, and interface specifica-
tions. ‘J’he system could be more capable since the permutations of the capabilities of tlie
four primitives would be available in one primitive. Inclucling the Move To Touch primitive
capability could be more difficult since rnilltiple trajectory segments are included.

An alternative approach to increasing the remote site system capability would be to
provide a programming language interface to the local site. This is a common approach for
terrestrial robotics [23, 24], This could potentially provide greater capability by the remote
site, but flight qualification is likely to be a problem with this approach. The task primitives
approach above has the advantage that a. prinlitive’s logic, control algorithms, and software
can be flight qualified once and then used mpeatcdly with the only change being the specific
paramctcrization (which of course will have to be verified for safety). Verification of a new
program written in a robot control language, before sending it for execution at the remote
site, could be difflcu]t and costly. The flexibility gained may not be worth the risk in the
approach, particularly for the first generation of space manipulators.

The approach selected to increase th~ remote site system capability is data driven
task execution with fixed software modules [10]. The system design is similar to the remote

16

site architecture for sequence control on the Galileo unmanned spacecraft [12, 13]. The
resultant system capability is the permutations of capability of the various control modules
(or subsystems in spacecraft control terminology). The implementation for space manipu-
lator control utilizes impedance based Generalized Compliant hlotion with extensions for
redundant arm control [25, 26]. Any number of control sources, e.g., trajectory generator,
force error, and visual servoing, can be used simultaneously. The resultant behavior of the
combination of control sources is the task execution. The remote site receives command
sequences and stores them in a task command queue or reflex command queues. The task
command queue holds the task command sequence to execute the task. The reflex com-
mand queues have task sequences which are executed upon monitor events which are not
specified as acceptable task termination conditions.

5.2 Local Site Evolution

The local site capability is being upgraded by providing automation aids for model calibra-
tion and task planning and an iconic interface for task planning and sequencing integrated
with increased graphical interaction for sequence generation. As machine vision capabilities
increase, the amount of operator interaction required in operator coached machine vision
will decrease. Laser range scanner data will be merged with vision data to further enchance
model building and update. Task simulation will be enhanced by adding dynamics and sen-
sor based control effects. For example, arm flexibility and environment contact dynamics
will be modeled.

The sequence generation process with the {Jser hlacro Interface described above in-
volved creating individual commands from macro templates and then concatenating these
commands together into command sequences. An important part of creating individual
commands is the generation of context dependent parameterization. This step can be au-
tomated if the contextual data is provided to the interface before the command is created.
This early step of inputing contextual task parametrization is called the knowledge inser-
tion step and ~JMI is being enhanced to allow insertion of this data. Thus, context specific
commands and parametrization are input into the operator interface during the knowledge
insertion step and the operator specifies the sequence of context specific commands for a
task during sequence generation, The new system has a knowledgebase (a more general
version of the previous database) which holds contextual task execution commands and
parametrization, The task specific data may originate from various places such as n~an-
ufacturer specifications or empirical experimentation. hiuch of this contextual data would
not be known by the operator generating the tasks, but it is automatically provided by
the knowledgebase. During sequence generation, the task state must be known so that the
contextual information can be automatically generated. Specialists in robotics and task
specification can be used for the knowledge insertion phasse while a person with different
skills, e.g., an astronaut, could perform the sequence generation phase.

Integration of the iconic interface with the grapl)ical environment will allow the op-
erator to better utilize the graphical environment for sequence generation. The previous
system provided graphical simulation, object selection. and destination selection. The new

17

.

system will allow the operator to also select commands within the graphical environment
from options automatically generated dependent on the task context. If the context is clear
enough, commands could be selected automatically. The telcprogramming methodology
was recently proposed where sequences of low level primitive commands are automatically
generated by interpreting the actions of an operator interacting with a graphical environ-
ment [15]. The approach may be valuable for unmodeled environments, but lacks contextual
information and the selection of specialized commands which arc available with a super-
vised autonomy system. In the supervised autonomy approach, higher level commands are
generated, either via the graphicaJ environment or iconic menus. The operator specifies
context by selecting objects, destinations, and task types. Commands specific to the task
context are generated. These commands are automatically y decomposed into specific remote
site task execution commands. For the new remote site task execution system described in
Section 5,1 above, the. sequence of module command,s and parameterization is automatically
generated. If multiple command options are possible, such as grasp compliantly or grasp
while pushing against the object, the interface queries the operator for the specific com-
mand and any undefined parametrization. ‘I%is interaction can occur within the graphical
environment or on the iconic interface.

The utilization of a priori knowledge insertion and interactive sequence building is
now described with a bolt turning example. After ~inserting an orbital replacement unit
into the Space Station truss, a bolt may be [eed to be tightened to secure the ORU. A “
specific torque associated with the ORU will” be required. The specific required torque
for that ORU bolt will have km inserted into the interface during the earlier knowledge
insertion phase. During sequence generation, the operator selects the high level command to
turn the bolt and the operator interface automatically generates a command with detailed
para.meterization including the required torque read from the knowledgebase based upon
the known context of the specific ORU.

6 Conclusions

Space applications provide both an important application domain for telerobotics and many
important constraints on the implementation approach. Successful application of supervised
autonomy methods to remote control of unmanned spacecraft demonstrates the viability
of the approach to that class of space robots. Supervised autonomy is also a viable near
term approach for remote control of space manipulators. Safety is achieved by generating
commands with parameters specific to the task and through a priori simulation. Effects
of time delay are eliminated by providing closed loop control, monitoring, and reflex at
the remote site. Remote site computation requirements are limited by providing only task
execution and reflex at the remote site while all task planning is done at the local, e.g.,
Earth, site.

18

Acknowledgements

The work described in this paper was performed at the Jet Propulsion Laboratory, Cal-
ifornia institute of ‘1’echnolo~y, under contract with the National Aeronautics and Space
Administration.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Brian H. Wilcox. Robotic vehicles for planetary exploration. Journal of Applied Intel-
ligence, 2:181-193, 1992.

W. R. Ferrell and T. 13. Sheridan. Supervisory control of remote manipulation. IEEE
Spectrum, pages 81-88, October 1967.

‘1’hurston I,. Ilrooks III. and Thomas 11. Sheridan. Superman: A system for supervi-
sory manipulation and the study of human/computer interactions. Technical Report
MITSG 79-20, hlassachusetts institute of Technology, July 1979.

Thomas Sheridan. lklerobotics, A utornniion, and IIuman Supervisory Control. M.I.T.
Press, 1992.

S. Hayati and S. T. Venkataraman, Design and implementation of a robot control’
system with traded and shared control capability. In Proceedings IEEE International
Conference on Robotics and Automation, pages 1310-1315, 1989.

Paul G. IIackes. Generalized compliant motion with sensor fusion. In Proceedings 1991
ICA R: Fifth Inkrnational Conference on A dvancecf Robot its, Robots in Unstructured
Environments, pages 1281-1286, Piss, Italy, June 19-221991.

Paul G. Jlackes. Dual-arm supervisory and shared control space servicing task experi-
ments. In Proceedings A IAA Slxlce l%o~mms and 7kchnologies Conference, lIuntsville,
AL, March 24-271992. AIAA paper No. 92-1677.

Paul G. Backes. Ground-remote control for space station telerobotics with time delay.
In Proceedings A AS Guidance and Control Conference, Keystone, CO, February 8-12
1992. AAS paper No. 92-052.

Paul G. Backes. Generalized compliant motion task description and execution within a
complete telerobotic system. In Proceedings 1.
Engineering, August 9-11 1990.

Paul G. Backes, Mark K. Long, and Robert
obotics systems for maximum performance.
Confcmnce, Irvine, CA, February 3-61992.

;EE International Conference on Systems

), Steele. Designing minimal space teler-
In Proceedings A IA A Aerospace Design

R. Aster, J.M. de Pitahaya, and G. Deshpande. Analysis of end-to-end information sys-
tem latency for space station freedom. J~t Propulsion I,aboratory, Internal Document
D-86.50, May 1991.

19

,’

[12] Galileo Project. Galileo program description document - command and data sub-
system, phase 9.1. ‘1’ethnical Report 625-355-06000, D-535 Rev. G, Jet Propulsion
Laboratory, May 1989.

[13] Galileo Project. Galileo flight operations plan - galileo command dictionary. Technical
Report 1’11625-505, D-234, Jet Propulsion Laboratory, September 1989.

[14] B. Don, D. Wilcox, T. Litwin, and I). Gennery. Operator-coached machine vision for
space telerobotics. In SPIE Symposium on Advances in Intelligent Systems, Conference
on Cooperative intelligent Robots in Space, 130ston, Massachusetts, November 1990.

[15] Janez I?unda, Thomas S. Lindsay, and Richard P. Paul. Teleprogramming: Toward
delay-invariant remote manipulation. Presence, 1(1):29-44, Winter 1992.

[]6] Paul G. Baclies and Karn S. Tso. Umi: An interactive supervisory and shared control
system for telerobotics. In Proceedings IEEE International Conference on Robotics and
Automation, pages 1096--1101, Cincinnati, Ohio, May 1990.

[17] J. Ilalaram and H. Stone. Intelligent Robotic Systems For Space Exploration, chapter
Automated Assembly in The JPI, Telerobot Testbed. Kluwer Academic Publishers,
1992.

[18] Samad Hayati, Thomas Lee, Karn Tso, ancl Paul G. Ba.ekes. A testbed for a unified
- teleoperated-autonomous dual-arm robotic system, In Procccdings IEEE l“nterrwtional

Conjcnmce on Robotics and Automation, 1990.

[19] Kam S. Tso, Paul G. IIackes, Thomas S. Lee, and Samad Hayati. A n~ulti-
arm tele/autonomous executive system. In Proceedings international Symposium on
Robotics and Mant/jaciuring, Durnaby, D. C., Canada, July 18-201990.

[20] N. IIogan. lmpm]ance control: An approach to manipulation: Part i – theory. ASME
Journal oj Dynamic Systems, Measurement, and Control, 107:1-7, March 1985.

[21] M. 11. Raibert and J. J. Craig. IIybrid position/force control of manipulators. ASMZI
Journal oj Dynamic Syslcms, Measurement, and Control, 102:126-133, June 1981.

[22] Paul G. Ilackes. Supervised autonomous control, shared control, and teleoperation for
space servicing. In Proceedings Space Opcrat ions, A pplicat ions, and Research Sympo-
sium, IIouston, August 4-6 1992.

[23] UNIMATION IIIC. User’s guide to val ii, progratnming manual. Technical Report
398AGI, Shelter Rocli Lane, Danbury, CT. 06810, .

[24] L.R. Nackman, M.A. I,avin, R .II. Taylor, W.C. I)ietrich, and 1).1). Grossman. Aml/x:
A programming language for design and manufacturing, In Proceedings Joint Computer
Conjemrzce, pages 145-1.59, November 2-61986.

[25] Paul G. Ilackes. Multi-sensor based impedance control for task execution. In Procecii-
ings IEEE International Conjcrence on Robotics and Automation, Nice, France, h{ay
1992,

[26] Mark K, I,ong and Pau] G. IIackes. Impcdancc based shared control of a redundant
robot, In IASTED International Confcrcncc on Control ond Robotics, pages 106–1 09,
Vancouver, Canada, August 4-61992.

21

